Evidence for rule conflation Gregory Stump

Emeritus, University of Kentucky gregorystump76@gmail.com

Download these slides from
english.as.uky.edu/gstump/recent-presentation-slides

Fourth American International Morphology Meeting, Stony Brook University, May 3-5, 2019

Complex affixes

Morphological theory has long been dominated by the assumption that affixes are minimal units of morphological analysis, insusceptible to division into smaller grammatically significant forms.

```
Wikipedia, "Affix":
In linguistics, an affix is a morpheme that is attached to a word
stem to form a new word or word form.
```


Complex affixes

Morphological theory has long been dominated by the assumption that affixes are minimal units of morphological analysis, insusceptible to division into smaller grammatically significant forms.

Wikipedia, "Affix":

In linguistics, an affix is a morpheme that is attached to a word stem to form a new word or word form.

Though this assumption has sometimes been questioned (e.g. by
Bauer 1988, Bochner 1992, Raffelsiefen 1992, Luís \& Spencer 2005) and though descriptive grammars (e.g. Arnott 1970, Soukka 2000) sometimes abandon it, it remains a matter of wide consensus across the theoretical landscape.

Yet, evidence suggests that affixes do in fact combine to form more complex affixes.

Complex affixes

Here, I discuss some of this evidence from the perspective of rule-based morphology; I focus less on principles of affix combination per se than on the principle by which simpler rules of affixation are conflated to form more complex rules.

Complex affixes

$\begin{array}{lll}\text { (1) Notation: } & {[-y z]:} & \text { the rule that suffixes }-y z \\ & {[-a b-y z]:} & \\ & \text { the conflation of }[-y z] \text { with }[-a b]\end{array}$

Complex affixes

(1) Notation: $[-y z]$: the rule that suffixes $-y z$ [-ab-yz]: the conflation of [-yz] with [-ab]
(2) Conflation of two suffixation rules:

By default, $[-a b-y z]=([-y z] \circ[-a b]) ;$ this default may be overridden.

Five kinds of evidence for postulating a principle of rule conflation
I. Asymmetrical rule oppositions
II. Processing frequent affix sequences
III. Dependent rules
IV. Noncomputable content
V. "Inward potentiation"
I. Asymmetrical rule oppositions

I. Asymmetrical rule oppositions

Ordinarily, morphological systems conform to a "symmetry principle" according to which relations of paradigmatic opposition among morphological rules are relations between individual rules.

This symmetry principle is what allows affix position classes to be represented as columns of individual affixes.

Yet, there are instances in which the application of an individual rule seems to be paradigmatically opposed to the successive application of two rules.

I. Asymmetrical rule oppositions

Table 1. Present-system forms (indicative and subjunctive) of Latin PARĀRE 'prepare'

	Present				Imperfect					Future	
	Active		Passive		Activ			Passive		Active	Passive
Indicative											
1sg	par -ō	par	-	-r	\|parāba	-m	\|parāba	-	-r	parāb -ō	parāb -o -r
2sg	parā -s	parā	-r -r	-is	parābā		parābā	-r	-is	parābi -s	parābe -r -is
3 sg	para -t	parā	-t -	-ur	parāba		parābā	-t	-ur	parābi -t	\|parābi -t -ur
1 pl	parā -mus	parā	-mu -r		parābā	-mus	parābā	-mu	-r	parābi -mus	parābi -mu -r
2 pl	parā-tis	parā	-mi		parābā		parābā	-mi		parābi -tis	parābi -minī
3 pl	para -nt	para	-nt	-ur	parāba		parāba	-nt	-ur	parāb -unt	parābu -nt -ur
Subjunctive											
1sg	pare -m	pare	-	-r	parāre	-m	\|parāre	-	-r		
2 sg	parē -s	parē	-r	-is	parārē		parārē	-r	-is		
3 sg	pare -t	parē	-t	-ur	parāre		parārē	-t	-ur		
1pl	parē -mus	parē	-mu -		parārē	-mus	parārē	-mu			
2pl	parē-tis	parē	-m		parārē		parārē	-mi			
3 pl	pare -nt	pare	-nt	-ur	parāre		parāre	-nt			11

I. Asymmetrical rule oppositions

Table 1 (detail). Present indicative forms of Latin PARĀRE 'prepare'

	Active		Passive		
1sg	par	-ō	par	-0	-r
2sg	parā	-s	parā	-r	-is
3sg	para	-t	parā	-t	-ur
1 pl	parā	-mus	parā	-mu	-r
2 pl	parā	-tis	parā		
$3 p 1$	para	-nt	para	-nt	-ur

In Latin, the application of the 2 pl passive rule [-minī] is paradigmatically opposed to the successive application of two rules, one expressing subject agreement (e.g. 3pl [-nt]), the other expressing passive voice ([-ur]).

I. Asymmetrical rule oppositions

Table 1 (detail). Present indicative forms of Latin PARĀRE 'prepare'

	Active		Passive		
1sg	par	- $\overline{0}$	par	-0	-r
2sg	parā	-s	parā	-r	-is
3sg	para	-t	parā	-t	-ur
1 pl	parā	-mus	parā	-mu	-r
2pl	parā	-tis	parā		
$3 p 1$	para	-nt	para	-nt	-ur

This apparent asymmetry is reconcilable with the symmetry principle if one assumes that [-ur] generally conflates with a subjectagreement rule to form a complex rule such as [-nt-ur] and that it is to the application of such conflated rules that the application of the simple [-minī] rule is opposed.
II. Processing frequent affix sequences

II. Processing frequent affix sequences

The null hypothesis is that affix sequences of equal length require the same processing time.

Bilgin 2016, however, show that this is not the case-that controlling for frequency differences among individual affixes, stems, and affix-stem combinations, affix sequences that are frequent are processed more rapidly than those that are less frequent.

II. Processing frequent affix sequences

frequent affix sequence

infrequent stem and stem-affix combinations

Figure 1. The parts of the word form 'caused to become a rhino' in Turkish

II. Processing frequent affix sequences

Figure 2. The parts of the word form 'having caused to become an antelope' in Turkish

II. Processing frequent affix sequences

Bilgin's evidence suggests that if the joint application of successive rules is frequent enough, their conflation may be stored in memory. (Cf. O'Donnell 2015.)

III. Dependent rules

III. Dependent rules

Ordinarily, a morphological rule's application is not directly conditioned by that of another rule.

Yet, there are instances in which a rule's application seems to depend directly on that of a "carrier" rule (Harris 2017).

III. Dependent rules

In Limbu [Kiranti; Nepal], the 1sg agent rule [-n] is dependent in this way: it must always piggy-back on an appropriate carrier rule.

Table 2. 1sg agent forms in the positive nonpreterite paradigm of Limbu HUPMA? 'teach'

agent \rightarrow patient	stem	suffix					
		1	4	5	8	9	
a. $1 \mathrm{sg} \rightarrow 2 \mathrm{sg}$	hup	-ne					'I teach you (sg.)'
b. 1sg \rightarrow 2du	hup	-ne			-ci ${ }^{1}$	-	'I teach you (du.)'
c. $1 \mathrm{sg} \rightarrow 2 \mathrm{pl}$	hup	$-n(\varepsilon)$			-i	-ク	'I teach you (pl.)'
d. $1 \mathrm{sg} \rightarrow 3 \mathrm{sg}$	hupr		-u	-			'I teach her/him'
e. 1sg \rightarrow 3nonsg	hupr		-u	-n	-si	-ท	'I teach them'
1. alternant of si (van	Driem	1987	77)				

III. Dependent rules

In Limbu [Kiranti; Nepal], the 1sg agent rule [-n] is dependent in this way: it must always piggy-back on an appropriate carrier rule.

The appropriate carrier rules are those filling suffix positions 4 and 8 in a verb's inflectional morphology (Table 1).

Table 2. 1sg agent forms in the positive nonpreterite paradigm of Limbu HUPMA? 'teach'

agent \rightarrow patient	stem	suffix					
		1	4	5	8	9	
a. $1 \mathrm{sg} \rightarrow 2 \mathrm{sg}$	hup	-ne					'I teach you (sg.)'
b. 1sg \rightarrow du	hus	-ne			-ci ${ }^{1}$	-	'I teach you (du.)'
c. $1 \mathrm{sg} \rightarrow 2 \mathrm{pl}$	hup	$-n(\varepsilon)$			-i	-	'I teach you (pl.)'
d. 1sg $\rightarrow 3 \mathrm{sg}$	hupr		-u	-			'I teach her/him'
e. 1sg \rightarrow 3nonsg	hupr		-u	-	-si	-	'I teach them'

1. alternant of si (van Driem 1987: 77)

III. Dependent rules

In Limbu [Kiranti; Nepal], the 1sg agent rule [-n] is dependent in this way: it must always piggy-back on an appropriate carrier rule.
The appropriate carrier rules are those filling suffix positions 4 and 8 in a verb's inflectional morphology (Table 1).
In the absence of a carrier rule, the 1sg agent property remains unrealized by [-n].

Table 2. 1sg agent forms in the positive nonpreterite paradigm of Limbu HUPMAP 'teach'

agent \rightarrow patient	stem	suffix					
		1	4	5	8	9	
a. $1 \mathrm{sg} \rightarrow 2 \mathrm{sg}$	hup	-ne					'I teach you (sg.)'
b. $1 \mathrm{sg} \rightarrow 2 \mathrm{du}$	hup	-ne			$-c i{ }^{1}$	-	'I teach you (du.)'
c. $1 \mathrm{sg} \rightarrow 2 \mathrm{pl}$	hup	$-n(\varepsilon)$			-i	-ク	'I teach you (pl.)'
d. $1 \mathrm{sg} \rightarrow 3 \mathrm{sg}$	hupr		-u	-			'I teach her/him'
e. 1sg \rightarrow 3nonsg	hupr		-u	-	-si	-n	'I teach them'
1. alternant of si (van	Driem	1987:	77)				

III. Dependent rules

The relation between a dependent rule and its carrier can be formally represented as a relation of rule conflation.

Table 2. 1sg agent forms in the positive nonpreterite paradigm of Limbu HUPMAP 'teach'

agent \rightarrow patient	stem	suffix					
		1	4	5	8	9	
a. $1 \mathrm{sg} \rightarrow 2 \mathrm{sg}$	hu?	-ne					'I teach you (sg.)'
b. $1 \mathrm{sg} \rightarrow 2 \mathrm{du}$	hup	-ne			-ci ${ }^{1}$	מ-	'I teach you (du.)'
c. $1 \mathrm{sg} \rightarrow 2 \mathrm{pl}$	hup	$-n(\varepsilon)$			-i	-	'I teach you (pl.)'
d. $1 \mathrm{sg} \rightarrow 3 \mathrm{sg}$	hupr		-u	-n			'I teach her/him'
e. 1sg \rightarrow 3nonsg	hupr		-u	-	-si	-	'I teach them'
1. alternant of si (van	Driem	1987:	77)				

III. Dependent rules

The relation between a dependent rule and its carrier can be formally represented as a relation of rule conflation.

On this view, a dependent rule such as [- \quad] is a rule that never applies except as part of a conflation with a carrier rule, e.g. [-u-n], [-i-n], [-si-n].

Table 2. 1sg agent forms in the positive nonpreterite paradigm of Limbu HUPMAP 'teach'

agent \rightarrow patient	stem	suffix					
		1	4	5	8	9	
a. 1sg \rightarrow 2sg	hup	-ne					'I teach you (sg.)'
b. $1 \mathrm{sg} \rightarrow 2 \mathrm{du}$	hup	-ne			$-\mathrm{ci}{ }^{1}$	-ท	'I teach you (du.)'
c. $1 \mathrm{sg} \rightarrow 2 \mathrm{pl}$	hup	$-n(\varepsilon)$			-i	-ク	'I teach you (pl.)'
d. $1 \mathrm{sg} \rightarrow 3 \mathrm{sg}$	hupr		-u	-			'I teach her/him'
e. 1sg \rightarrow 3nonsg	hupr		-u	-	-si	-n	'I teach them'
1. alternant of si (van	Driem	1987:	77)				

III. Dependent rules

In the cases considered so far, rule conflation has the effect of rule composition; but other evidence shows that this is only a default property of rule conflation, and may be overridden.

III. Dependent rules

Table 3. Inflection of the adjective YAK 'big' in Noon (Cangin, Senegal)

		Noun class	Indefinite	Definite			
		Location 1		Location 2	Location 3		
Nondiminutive Inanimate			1	wiyak	wiyakwii	wiyakwum	wiyakwaa
		2	fiyak	fiyakfii	fiyakfum	fiyakfaa	
		3	miyak	miyakmii	miyakmum	miyakmaa	
		4	kiyak	kiyakkii	kiyakkum	kiyakkaa	
		5	piyak	piyakpii	piyakpum	piyakpaa	
		6	jiyak	jiyakjii	jiyakjum	jiyakjaa	
	pl	1-3	ciyak	ciyakcii	ciyakcum	ciyakcaa	
		4-6	tiyak	tiyaktii	tiyaktum	tiyaktaa	
Animate			yiyak	yiyakyii	yiyakyum	yiyakyaa	
	pl		biyak	biyakbii	biyakbum	biyakbaa	
Diminutive			jiyak	jiyakjii	jiyakjum	jiyakjaa	
	pl		tiyak	tiyaktii	tiyaktum	tiyaktaa	

(Soukka 2000: 86ff)

III. Dependent rules

Table 3. Inflection of the adjective YAK 'big' in Noon (Cangin, Senegal)

		Noun class	Indefinite	Definite			
		Location 1		Location 2	Location 3		
Nondiminutive Inanimate			1	wiyak	wiyakwii	wiyakwum	wiyakwaa
		2	fiyak	fiyakfii	fiyakfum	fiyakfaa	
		3	miyak	miyakmii	miyakmum	miyakmaa	
		4	kiyak	kiyakkii	kiyakkum	kiyakkaa	
		5	piyak	piyakpii	piyakpum	piyakpaa	
		6	jiyak	jiyakjii	jiyakjum	jiyakjaa	
	pl	1-3	ciyak	ciyakcii	ciyakcum	ciyakcaa	
		4-6	tiyak	tiyaktii	tiyaktum	tiyaktaa	
Animate			yiyak	yiyakyii	yiyakyum	yiyakyaa	
	pl		biyak	biyakbii	biyakbum	biyakbaa	
Diminutive			jiyak	jiyakjii	jiyakjum	jiyakjaa	
	pl		tiyak	tiyaktii	tiyaktum	tiyaktaa	

(Soukka 2000: 86ff)

III. Dependent rules

Table 3. Inflection of the adjective YAK 'big' in Noon (Cangin, Senegal)

(Soukka 2000: 86ff)

III. Dependent rules

Table 3. Inflection of the adjective YAK 'big' in Noon (Cangin, Senegal)

		Noun class	Indefinite	Definite			
		Location 1		Location 2	Location 3		
Nondiminutive Inanimate	sg		1	wiyak	wiyakwii	wiyakwum	wiyakwaa
		2	fiyak	fiyakfii	fiyakfum	fiyakfaa	
		3	miyak	miyakmii	miyakmum	miyakmaa	
		4	kiyak	kiyakkii	kiyakkum	kiyakkaa	
		5	piyak	piyakpii	piyakpum	piyakpaa	
		6	jiyak	jiyakjii	jiyakjum	jiyakjaa	
	pl	1-3	ciyak	ciyakcii	ciyakcum	ciyakcaa	
		4-6	tiyak	tiyaktii	tiyaktum	tiyaktaa	
Animate	sg		yiyak	yiyakyii	yiyakyum	yiyakyaa	
	pl		biyak	biyakbii	biyakbum	biyakbaa	
Diminutive			jiyak	jiyakjii	jiyakjum	jiyakjaa	
	pl		tiyak	tiyaktii	tiyaktum	tiyaktaa	

(Soukka 2000: 86ff)

III. Dependent rules

Table 3. Inflection of the adjective YAK 'big' in Noon (Cangin, Senegal)

		Noun class	Indefinite	Definite			
		Location 1		Location 2	Location 3		
Nondiminutive Inanimate			1	wiyak	wiyakwii	wiyakwum	wiyakwaa
		2	fiyak	fiyakfii	fiyakfum	fiyakfaa	
		3	miyak	miyakmii	miyakmum	miyakmaa	
		4	kiyak	kiyakkii	kiyakkum	kiyakkaa	
		5	piyak	piyakpii	piyakpum	piyakpaa	
		6	jiyak	jiyakjii	jiyakjum	jiyakjaa	
	pl	1-3	ciyak	ciyakcii	ciyakcum	ciyakcaa	
		4-6	tiyak	tiyaktii	tiyaktum	tiyaktaa	
Animate			yiyak	yiyakyii	yiyakyum	yiyakyaa	
	pl		biyak	biyakbii	biyakbum	biyakbaa	
Diminutive			jiyak	jiyakjii	jiyakjum	jiyakjaa	
	pl		tiyak	tiyaktii	tiyaktum	tiyaktaa	

(Soukka 2000: 86ff)

III. Dependent rules

Table 3. Inflection of the adjective YAK 'big' in Noon (Cangin, Senegal)

		Noun class	Indefinite	Definite			
		Location 1		Location 2	Location 3		
Nondiminutive Inanimate			1	wiyak	wiyakwii	wiyakwum	wiyakwaa
		2	fiyak	fiyakfii	fiyakfum	fiyakfaa	
		3	miyak	miyakmii	miyakmum	miyakmaa	
		4	kiyak	kiyakkii	kiyakkum	kiyakkaa	
		5	piyak	piyakpii	piyakpum	piyakpaa	
		6	jiyak	jiyakjii	jiyakjum	jiyakjaa	
	pl	1-3	ciyak	ciyakcii	ciyakcum	ciyakcaa	
		4-6	tiyak	tiyaktii	tiyaktum	tiyaktaa	
Animate				yiyakyii	yiyakyum		
	pl		biyak	biyakbii	biyakbum	biyakbaa	
Diminutive	sg		jiyak	jiyakjii	jiyakjum	jiyakjaa	
	pl		tiyak	tiyaktii	tiyaktum	tiyaktaa	

(Soukka 2000: 86ff)

III. Dependent rules

Table 3. Inflection of the adjective YAK 'big' in Noon (Cangin, Senegal)

		Noun class	Indefinite	Definite			
		Location 1		Location 2	Location 3		
Nondiminutive Inanimate sg			1	wiyak	wiyakwii	wiyakwum	wiyakwaa
		2	fiyak	fiyakfii	fiyakfum	fiyakfaa	
		3	miyak	miyakmii	miyakmum	miyakmaa	
		4	kiyak	kiyakkii	kiyakkum	kiyakkaa	
		5	piyak	piyakpii	piyakpum	piyakpaa	
		6	jiyak	jiyakjii	jiyakjum	jiyakjaa	
pl		1-3	ciyak	ciyakcii	ciyakcum	ciyakcaa	
		4-6	tiyak	tiyaktii	tiyaktum	tiyaktaa	
$\begin{array}{cc} \hline \text { Animate } & \begin{array}{l} \mathrm{sg} \\ \mathrm{pl} \end{array} \\ \hline \end{array}$			yiyak	yiyakyii	yiyakyum	yiyakyaa	
			biyak	biyakbii	biyakbum	biyakbaa	
Diminutive			jiyak	jiyakjii	jiyakjum	jiyakjaa	
	pl		tiyak	tiyaktii	tiyaktum	tiyaktaa	

(Soukka 2000: 86ff)

III. Dependent rules

Table 3. Inflection of the adjective YAK 'big' in Noon (Cangin, Senegal)

		Noun class	Indefinite	Definite			
		Location 1		Location 2	Location 3		
Nondiminutive Inanimate			1	wiyak	wiyakwii	wiyakwum	wiyakwaa
		2	fiyak	fiyakfii	fiyakfum	fiyakfaa	
		3	miyak	miyakmii	miyakmum	miyakmaa	
		4	kiyak	kiyakkii	kiyakkum	kiyakkaa	
		5	piyak	piyakpii	piyakpum	piyakpaa	
		6	jiyak	jiyakjii	jiyakjum	jiyakjaa	
	pl	1-3	ciyak	ciyakcii	ciyakcum	ciyakcaa	
		4-6	tiyak	tiyaktii	tiyaktum	tiyaktaa	
Animate			yiyak	yiyakyii	yiyakyum	yiyakyaa	
	pl		biyak	biyakbii	biyakbum	biyakbaa	
Diminutive			jiyak	jiyakjii	jiyakjum	jiyakjaa	
	pl		tiyak	tiyaktii	tiyaktum	tiyaktaa	

(Soukka 2000: 86ff)

III. Dependent rules

Table 3. Inflection of the adjective YAK 'big' in Noon (Cangin, Senegal)

		Noun class	Indefinite	Definite			
		Location 1		Location 2	Location 3		
Nondiminutive Inanimate sg			1	wiyak	wiyakwii	wiyakwum	wiyakwaa
		2	fiyak	fiyakfii	fiyakfum	fiyakfaa	
		3	miyak	miyakmii	miyakmum	miyakmaa	
		4	kiyak	kiyakkii	kiyakkum	kiyakkaa	
		5	piyak	piyakpii	piyakpum	piyakpaa	
		6	jiyak	jiyakjii	jiyakjum	jiyakjaa	
pl		1-3	ciyak	ciyakcii	ciyakcum	ciyakcaa	
		4-6	tiyak	tiyaktii	tiyaktum	tiyaktaa	
$\begin{array}{ll}\text { Animate } & \\ & \mathrm{sg} \\ \mathrm{pl}\end{array}$			yiyak	yiyakyii	yiyakyum	yiyakyaa	
			biyak	biyakbii	biyakbum	biyakbaa	
Diminutive			jiyak	jiyakjii	jiyakjum	jiyakjaa	
	pl		tiyak	tiyaktii	tiyaktum	tiyaktaa	

(Soukka 2000: 86ff)

III. Dependent rules

Table 3. Inflection of the adjective YAK 'big' in Noon (Cangin, Senegal)

		Noun class	Indefinite	Definite			
		Location 1		Location 2	Location 3		
Nondiminutive Inanimate			1	wiyak	wiyakwii	wiyakwum	wiyakwaa
		2	fiyak	fiyakfii	fiyakfum	fiyakfaa	
		3	miyak	miyakmii	miyakmum	miyakmaa	
		4	kiyak	kiyakkii	kiyakkum	kiyakkaa	
		5	piyak	piyakpii	piyakpum	piyakpaa	
		6	jiyak	jiyakjii	jiyakjum	jiyakjaa	
	pl	1-3	ciyak	ciyakcii	ciyakcum	ciyakcaa	
		4-6	tiyak	tiyaktii	tiyaktum	tiyaktaa	
Animate			yiyak	yiyakyii	yiyakyum	yiyakyaa	
	pl		biyak	biyakbii	biyakbum	biyakbaa	
Diminutive			jiyak	jiyakjii	jiyakjum	jiyakjaa	
	pl		tiyak	tiyaktii	tiyaktum	tiyaktaa	

(Soukka 2000: 86ff)

III. Dependent rules

Table 3. Inflection of the adjective YAK 'big' in Noon (Cangin, Senegal)

		Noun class	Indefinite	Definite			
		Location 1		Location 2	Location 3		
Nondiminutive Inanimate			1	wiyak	wiyakwii	wiyakwum	wiyakwaa
		2	fiyak	fiyakfii	fiyakfum	fiyakfaa	
		3	miyak	miyakmii	miyakmum	miyakmaa	
		4	kiyak	kiyakkii	kiyakkum	kiyakkaa	
		5	piyak	piyakpii	piyakpum	piyakpaa	
		6	jiyak	jiyakjii	jiyakjum	jiyakjaa	
	pl	1-3	ciyak	ciyakcii	ciyakcum	ciyakcaa	
		4-6	tiyak	tiyaktii	tiyaktum	tiyaktaa	
Animate	sg		yiyak	yiyakyii	yiyakyum	yiyakyaa	
	pl		biyak	biyakbii	biyakbum	biyakbaa	
Diminutive	sg		jiyak	jiyakjii	jiyakjum	jiyakjaa	
	pl		tiyak	tiyaktii	tiyaktum	tiyaktaa	

(Soukka 2000: 86ff)

III. Dependent rules

Table 3 (detail). Inflection of the adjective YAK 'big' in Noon

		Noun class	Definite Location 2	
Non-	Inanimate	sg	1	wiyakwum
diminutive		2	fiyakfum	
		3	miyakmum	
		4	kiyakkum	
		5	piyakpum	
		6	jiyakjum	
		pl	$1-3$	ciyakcum
		$4-6$	tiyaktum	
		Animate		yiyakyum
		pl		biyakbum
Diminutive		sg		jiyakjum
		pl		tiyaktum

III. Dependent rules

Table 3 (detail). Inflection of the adjective YAK 'big' in Noon

			Noun class	Definite Location 2				
				-2	-1	Stem	1	2
Nondiminutive	Inanimate	sg	1	w-	$i-$	yak	-w	-um
			2	f -	$i-$	yak	-f	-um
			3	m-	$i-$	yak	-m	-um
			4	k -	$i-$	yak	-k	-um
			5	p -	$i-$	yak	-p	-um
			6	j-	$i-$	yak	-j	-um
		pl	1-3	$c-$	$i-$	yak	-c	-um
			4-6	$t-$	$i-$	yak	-t	-um
	Animate	sg		y^{-}	$i-$	yak	-y	-um
		pl		$b-$	$i-$	yak	-b	-um
Diminutive		sg		${ }^{j-}$	$i-$	yak	-j	-um
		pl		$t-$	i -	yak	-t	-um

III. Dependent rules

Table 3 (detail). Inflection of the adjective YAK 'big' in Noon

			Noun class	Definite Location 2				
				-2	-1	Stem	1	2
Nondiminutive	Inanimate	sg	1	w-	$i-$	yak	-w	-um
			2	f	$i-$	yak	-f	-um
			3	m -	$i-$	yak	-m	-um
			4	k -	$i-$	yak	-k	-um
			5	p -	$i-$	yak	-p	-um
			6	j -	$i-$	yak	-j	-um
		pl	1-3	$c-$	$i-$	yak	-c	-um
			4-6	$t-$	$i-$	yak	-t	-um
	Animate	sg		y -	$i-$	yak	-y	-um
		pl		$b-$	$i-$	yak	-6	-um
Diminutive		sg		${ }^{j}$	$i-$	yak	-j	-um
		pl		$t-$	i -	yak	-t	-um

III. Dependent rules

Table 3 (detail). Inflection of the adjective YAK 'big' in Noon

			Noun class	Definite Location 2				
				-2	-1	Stem	1	2
Nondiminutive	Inanimate	sg	1	w-	$i-$	yak	-w	-um
			2	f -	$i-$	yak	-f	-um
			3	m-	$i-$	yak	-m	-um
			4	k -	$i-$	yak	-k	-um
			5	p -	$i-$	yak	-p	-um
			6	j-	$i-$	yak	-j	-um
		pl	1-3	$c-$	$i-$	yak	-c	-um
			4-6	$t-$	$i-$	yak	-t	-um
	Animate	sg		y -	$i-$	yak	-y	-um
		pl		$b-$	$i-$	yak	-b	-um
Diminutive		sg		j-	$i-$	yak	-j	-um
		pl		$t-$	i -	yak	-t	-um

III. Dependent rules

Table 3 (detail). Inflection of the adjective YAK 'big' in Noon

III. Dependent rules

Table 3 (detail). Inflection of the adjective YAK 'big' in Noon

III. Dependent rules

In the inflection of Noon adjectives, the affixational noun-class rules conflate are dependent, taking as their carrier rule either the rule introducing the prefixal formative i - or a rule introducing a locational suffix. The carrier rule determines whether the resulting conflation is a rule of prefixation or suffixation.

III. Dependent rules

In the inflection of Noon adjectives, the affixational noun-class rules conflate are dependent, taking as their carrier rule either the rule introducing the prefixal formative i - or a rule introducing a locational suffix. The carrier rule determines whether the resulting conflation is a rule of prefixation or suffixation.

Here, rule conflation is not the same as rule composition. In particular, the conflation of a prefixation rule P with a suffixation rule S has an effect different from the composition of P with S :
(3) a. Conflation of [w-] with [-um]: suffixes stem with -w-um
b. Composition of [w-] with [-um] : prefixes stem with w-, suffixes stem with -um

IV. Noncomputable content

IV. Noncomputable content

Ordinarily, the content expressed by a sequence of rule applications is derivable from the content expressed by the individual rules in that sequence. Yet, some rule sequences seem to express a more specific content than can be deduced from their members.

IV. Noncomputable content

Neither rule of affixation that applies in the realization of Breton 2pl fut skriv-o-c'h unambiguously realizes the future tense. Both [-o] and [-c'h] apply in nonfutures:

Table 4. Finite forms of Breton SKRIVAÑ 'write'

	Indicative				Irrealis		Imperative
	Present	Imperfect	Future	Past	Present	Past	
1SG	skriv-an	skriv-e-n	skriv-i-n	skriv-is	skriv-f-e-n	skriv-j-e-n	
2SG	skriv-ez	skriv-e-s	skriv-i	skriv-j-out	skriv-f-e-s	skriv-j-e-s	skriv
3SG	skriv	skriv-e	skriv-o	skriv-as	skriv-f-e	skriv-j-e	skriv-e-t
1PL	skriv-o-mp	skriv-e-mp	skriv-i-mp	skriv-j-o-mp	skriv-f-e-mp	skriv-j-e-mp	skriv-o-mp
2PL	skriv-i-t	skriv-e-c'h	skriv-o-c'h	skriv-j-o-c'h	skriv-f-e-c'h	skriv-j-e-c'h	skriv-
3PL	skriv-o-nt	skriv-e-nt	skriv-i-nt	skriv-j-o-nt	skriv-f-e-nt	skriv-j-e-nt	skriv-e-nt
IMPS	skriv-e-r	skriv-e-d	skriv-o-r	skriv-j-o-d	skriv-f-e-d	skriv-j-e-d	

Yet, skrivoc'h is itself unambiguously future-tense.

IV. Noncomputable content

Neither rule of affixation that applies in the realization of Breton 2pl fut skriv-o-c'h unambiguously realizes the future tense. Both [-o] and [-c'h] apply in nonfutures:

Table 4. Finite forms of Breton SKRIVAÑ 'write'

	Indicative				Irrealis		Imperative
	Present	Imperfect	Future	Past	Present	Past	
1SG	skriv-an	skriv-e-n skriv-e-s skriv-e skriv-e-mp skriv-e-c'h skriv-e-nt skriv-e-d	skriv-i-n	skriv-is skriv-j-out skriv-as skriv-j-o-mp skriv-j-o-c'h skriv-j-o-nt skriv-j-o-d	skriv-f-e-n skriv-f-e-s skriv-f-e skriv-f-e-mp skriv-f-e-c’h skriv-f-e-nt skriv-f-e-d	skriv-j-e-n skriv-j-e-s skriv-j-e skriv-j-e-mp skriv-j-e-c'h skriv-j-e-nt skriv-j-e-d	
2SG	skriv-ez		skriv-i				skriv
3SG	skriv		skriv-o				skriv-e-t
1PL	skriv-o-mp		skriv-i-mp				skriv-o-mp
2PL	skriv-i-t		skriv-o-c'h				skriv-i
3PL	skriv-o-nt		skriv-i-nt				skriv-e-nt
IMPS	skriv-e-r		skriv-o-r				

Yet, skrivoc'h is itself unambiguously future-tense.

IV. Noncomputable content

Neither rule of affixation that applies in the realization of Breton 2pl fut skriv-o-c'h unambiguously realizes the future tense. Both [-o] and [-c'h] apply in nonfutures:

Table 4. Finite forms of Breton SKRIVAÑ 'write'

	Indicative				Irrealis		Imperative
	Present	Imperfect	Future	Past	Present	Past	
1SG	skriv-an	skriv-e-n	skriv-i-n	skriv-is	skriv-f-e-n	skriv-j-e-n	
2SG	skriv-ez	skriv-e-s	skriv-i	skriv-j-out	skriv-f-e-s	skriv-j-e-s	skriv
3SG	skriv	skriv-e	skriv-o	skriv-as	skriv-f-e	skriv-j-e	skriv-e-t
1PL	skriv-o-mp	skriv-e-mp	skriv-i-mp	skriv-j-o-mp	skriv-f-e-mp	skriv-j-e-mp	skriv-o-mp
2PL	skriv-i-t	skriv-e-c'h	skriv-o-c'h	skriv-j-o-c'h	skriv-f-e-c'h	skriv-j-e-c'h	skriv-i-t
3PL	skriv-o-nt	skriv-e-nt	skriv-i-nt	skriv-j-o-nt	skriv-f-e-nt	skriv-j-e-nt	skriv-e-nt
IMPS	skriv-e-r	skriv-e-d	skriv-o-r	skriv-j-o-d	skriv-f-e-d	skriv-j-e-d	

Yet, skrivoc'h is itself unambiguously future-tense.

IV. Noncomputable content

This peculiarity of skrivoc'h can be seen as the effect of a kind of poverty in the system of realization rules for Breton verbs. That is, one can assume that in the realization of the pairing

$$
\langle s k r i v-,\{2 \mathrm{pl} \text { fut }\}\rangle,
$$

there is no rule associating the future-tense property with an exponent-that this property simply goes unrealized.

But this is an unsatisfying analysis: although the future-tense property of skrivoc'h is realized neither by [-o] nor by [-c'h], it is nevertheless unambiguously realized by the combination of these two rules.

IV. Noncomputable content

A better analysis: Unlike either [-o] or [-c'h], [-o-c'h] realizes future tense.

Because more specific content may be associated with a conflated rule than is derivable from its component rules, the conflated rule cannot simply be equated with the composition of the smaller rules that it subsumes.

V. "Inward potentiation"

V. "Inward potentiation"

Potentiation (Williams 1981: 249f) is an outward relation: the application of rule A expands the domain of forms to which rule B may subsequently apply; e.g. [-able] potentiates [-ity].

V. "Inward potentiation"

Potentiation (Williams 1981: 249f) is an outward relation: the application of rule A expands the domain of forms to which rule B may subsequently apply; e.g. [-able] potentiates [-ity].

Yet, there are instances of "inward potentiation" in which the applicability of rule A to a particular form is seemingly licensed only by the subsequent application of rule B (Table 5).

V. "Inward potentiation"

Potentiation (Williams 1981: 249f) is an outward relation: the application of rule A expands the domain of forms to which rule B may subsequently apply; e.g. [-able] potentiates [-ity].

Yet, there are instances of "inward potentiation" in which the applicability of rule A to a particular form is seemingly licensed only by the subsequent application of rule B (Table 5).

Table 5. Three seeming instances of "inward potentiation" of rule A by rule B

Bases	Rule A	
whimsy	\rightarrow	${ }^{*}$ whimsic
nonsense	\rightarrow	${ }^{\text {n nonsensic }}$

V. "Inward potentiation"

Potentiation (Williams 1981: 249f) is an outward relation: the application of rule A expands the domain of forms to which rule B may subsequently apply; e.g. [-able] potentiates [-ity].

Yet, there are instances of "inward potentiation" in which the applicability of rule A to a particular form is seemingly licensed only by the subsequent application of rule B (Table 5).

Table 5. Three seeming instances of "inward potentiation" of rule A by rule B

Bases	Rule A	Rule B			compare:
whimsy	\rightarrow	${ }^{*}$ whimsic	\rightarrow	whimsical	cyclic(al)
nonsense	\rightarrow	${ }^{*}$ nonsensic	\rightarrow	nonsensical	

V. "Inward potentiation"

Potentiation (Williams 1981: 249f) is an outward relation: the application of rule A expands the domain of forms to which rule B may subsequently apply; e.g. [-able] potentiates [-ity].

Yet, there are instances of "inward potentiation" in which the applicability of rule A to a particular form is seemingly licensed only by the subsequent application of rule B (Table 5).

Table 5. Three seeming instances of "inward potentiation" of rule A by rule B

Bases	Rule A		Rule B	compare:	
whimsy	\rightarrow	${ }^{*}$ whimsic	\rightarrow	whimsical	cyclic(al)
nonsense	\rightarrow	${ }^{*}$ nonsensic	\rightarrow	nonsensical	
probable	\rightarrow	${ }^{*}$ probabilist			
simple	\rightarrow	${ }^{*}$ simplist			

V. "Inward potentiation"

Potentiation (Williams 1981: 249f) is an outward relation: the application of rule A expands the domain of forms to which rule B may subsequently apply; e.g. [-able] potentiates [-ity].

Yet, there are instances of "inward potentiation" in which the applicability of rule A to a particular form is seemingly licensed only by the subsequent application of rule B (Table 5).

Table 5. Three seeming instances of "inward potentiation" of rule A by rule B

Bases	Rule A		Rule B	compare:	
whimsy	\rightarrow	${ }^{*}$ whimsic	\rightarrow	whimsical	cyclic(al)
nonsense	\rightarrow	${ }^{*}$ nonsensic	\rightarrow	nonsensical	
probable	\rightarrow	${ }^{*}$ probabilist	\rightarrow	probabilistic	nationalist(ic)
simple	\rightarrow	${ }^{*}$ simplist	\rightarrow	simplistic	

V. "Inward potentiation"

Potentiation (Williams 1981: 249f) is an outward relation: the application of rule A expands the domain of forms to which rule B may subsequently apply; e.g. [-able] potentiates [-ity].

Yet, there are instances of "inward potentiation" in which the applicability of rule A to a particular form is seemingly licensed only by the subsequent application of rule B (Table 5).

Table 5. Three seeming instances of "inward potentiation" of rule A by rule B

Bases	Rule A		Rule B	compare:	
whimsy	\rightarrow	${ }^{*}$ whimsic	\rightarrow	whimsical	cyclic(al)
nonsense	\rightarrow	${ }^{*}$ nonsensic	\rightarrow	nonsensical	
probable	\rightarrow	${ }^{*}$ probabilist	\rightarrow	probabilistic	nationalist(ic)
simple	\rightarrow	${ }^{*}$ simplist	\rightarrow	simplistic	
beauty	\rightarrow	${ }^{*}$ beautic			
mort-	\rightarrow	${ }^{*}$ mortic			

V. "Inward potentiation"

Potentiation (Williams 1981: 249f) is an outward relation: the application of rule A expands the domain of forms to which rule B may subsequently apply; e.g. [-able] potentiates [-ity].

Yet, there are instances of "inward potentiation" in which the applicability of rule A to a particular form is seemingly licensed only by the subsequent application of rule B (Table 5).

Table 5. Three seeming instances of "inward potentiation" of rule A by rule B

Bases	Rule A		Rule B		compare:
whimsy	\rightarrow	${ }^{*}$ whimsic	\rightarrow	whimsical	cyclic(al)
nonsense	\rightarrow	${ }^{*}$ nonsensic	\rightarrow	nonsensical	
probable	\rightarrow	${ }^{*}$ probabilist	\rightarrow	probabilistic	nationalist(ic)
simple	\rightarrow	${ }^{*}$ simplist	\rightarrow	simplistic	
beauty	\rightarrow	${ }^{*}$ beautic	\rightarrow	beautician	
mort-	\rightarrow	${ }^{*}$ mortic	\rightarrow	mortician	academic(ian)

V. "Inward potentiation"

The principle of rule conflation affords a unitary account of outward and inward potentiation.

V. "Inward potentiation"

The principle of rule conflation affords a unitary account of outward and inward potentiation.
\square In instances of outward potentiation, the domain of rule [-ab] matches the domain of rule [-ab-yz]; e.g. the conflation [-able-ity] has fundamentally the same domain as [-able].

V. "Inward potentiation"

The principle of rule conflation affords a unitary account of outward and inward potentiation.
\square In instances of outward potentiation, the domain of rule [-ab] matches the domain of rule [-ab-yz]; e.g. the conflation [-able-ity] has fundamentally the same domain as [-able].
\square In instances of inward potentiation, the domain of [-ab-yz] includes forms that are absent from the domain of [-ab]; e.g. the domain of the conflation [-ic-al] includes whimsy and nonsense, while that of [-ic] does not.

V. "Inward potentiation"

The principle of rule conflation affords a unitary account of outward and inward potentiation.
\square In instances of outward potentiation, the domain of rule [-ab] matches the domain of rule [-ab-yz]; e.g. the conflation [-able-ity] has fundamentally the same domain as [-able].
\square In instances of inward potentiation, the domain of [-ab-yz] includes forms that are absent from the domain of [-ab]; e.g. the domain of the conflation [-ic-al] includes whimsy and nonsense, while that of [-ic] does not.
In view of this difference, the conflation [-ic-al] (unlike [-able-ity]) cannot simply be equated with the composition of [-al] with [-ic]; its domain of application is not what simple composition entails.

VI. Conclusion and discussion

VI. Conclusion and discussion

General conclusion

A sequence of rules may behave like a single rule under certain circumstances-

- its application may be paradigmatically opposed to that of a single rule
- it may be processed like a single rule
- the application of one of its members may be dependent on that of its other member
- it may realize noncomputable content
- its domain of application may differ from that of its first member rule.

This behavior follows from the assumption that the conflation of two rules is itself a rule.

VI. Conclusion and discussion

The nature of conflation

The evidence presented here suggests that in the default case, a conflated rule [-ab-yz] is the same as the composed rule ([-yz] $\circ[-a b]$), defining the same form, expressing the same content, and applying to the same domain.

VI. Conclusion and discussion

The nature of conflation

The evidence presented here suggests that in the default case, a conflated rule [-ab-yz] is the same as the composed rule ([-yz] $\circ[-a b]$), defining the same form, expressing the same content, and applying to the same domain.

Nevertheless, conflation and composition cannot be equated, for at least two reasons:
(i) Once [-ab-yz] is stored as an independent rule, its properties of form, category, content and domain of application may gradually deviate from those of ([-yz] ○ [-ab]).
(ii) Where A is a rule of prefixation and B a rule of suffixation, the conflation of A with B (or that of B with A) is not the same as their composition (see again (3)).

VI. Conclusion and discussion

Conflation and affix telescoping

Over time, a conflated rule [-ab-yz] may undergo "affix telescoping" (Haspelmath 1995)—a wholesale reanalysis as a simple rule of affixation [-abyz].

VI. Conclusion and discussion

Conflation and affix telescoping

Example: the reanalysis of Latin [-ā-t] as English [-ate]

Nominal ('captive'):	Latin captīv-	English captive
Verb ('take captive'): - $1^{\text {st }}$ conjugation: - Perf. pass. ptcp.:	\downarrow CONVERSION captīv-captīv- $\overline{-}-$ captīv-ā-t-	$\begin{aligned} & \downarrow \text { SUFFIXAL } \\ & \downarrow \text { DERIVATION } \end{aligned}$

VI. Conclusion and discussion

Conflation and affix telescoping

The Telescoping Question: Is rule C a synchronic conflation of two simpler rules A and B or a synchronically unconflated rule that has arisen through the diachronic telescoping of A and B ?

To resolve this issue, it is important to consider the properties of conflated rules.

VI. Conclusion and discussion

Conflation and affix telescoping

Table 6. Properties of the conflation C of rule B with rule A
a. Form transparency. The form defined by C is like a form defined by the successive application of A and B.
e.g. national-ist-ic
with possible (morpho)phonological effects: beauti-ful-ly /'bju.ti.fli/ read-abil-ity

VI. Conclusion and discussion

Conflation and affix telescoping

Table 6. Properties of the conflation C of rule B with rule A
a. Form transparency. The form defined by C is like a form defined by the successive application of A and B.
e.g. national-ist-ic
with possible (morpho)phonological effects: beauti-ful-ly /'bju.t土.fli/ read-abil-ity
b. Category transparency. The category of the form defined by C is the same as the category of a form defined by B.
e.g. nation-al-ize e_{v} (cf. vapor-ize)
with possible category narrowing: statist-ic-ian $n_{N / * A}$ (cf. Egypt-ian $n_{N / A}$)

VI. Conclusion and discussion

Conflation and affix telescoping

Table 6. Properties of the conflation C of rule B with rule A
c. Semantic transparency. By default, the content realized by C is the same as the content realized by the successive application of A and B.
e.g. nation-al-ize Override: statist-ic-ian (cf. Egypt-ian, scen-ic)

VI. Conclusion and discussion

Conflation and affix telescoping

Table 6. Properties of the conflation C of rule B with rule A
c. Semantic transparency. By default, the content realized by C is the same as the content realized by the successive application of A and B.
e.g. nation-al-ize Override: statist-ic-ian (cf. Egypt-ian, scen-ic)
d. Domain transparency. By default, the domain of C is a subset of the domain of A.
e.g. national-ist-ic
Override: character-ist-ic (*character-ist)

VI. Conclusion and discussion

Conflation and affix telescoping

Evidence shows that the same conflated rule may exhibit varying degrees of deviation from full transparency in its semantics and in its domain of application.

VI. Conclusion and discussion

Conflation and affix telescoping

Evidence shows that the same conflated rule may exhibit varying degrees of deviation from full transparency in its semantics and in its domain of application.

Table 7. Three conflated rules of adjective derivation and their variability with respect to semantic transparency and domain composition.

semantic transparency?	domain transparency?	Conflated rules exhibiting both form and category transparency		
		[-ist-ic]	[-ic-al]	[-ari-an]
Yes	Yes	capitalist $_{A}$ capitalistic	satiric satirical	parliamentary parliamentarian

VI. Conclusion and discussion

Conflation and affix telescoping

Evidence shows that the same conflated rule may exhibit varying degrees of deviation from full transparency in its semantics and in its domain of application.

Table 7. Three conflated rules of adjective derivation and their variability with respect to semantic transparency and domain composition.

semantic transparency?	domain transparency?	Conflated rules exhibiting both form and category transparency		
		[-ist-ic]	[-ic-al]	[-ari-an]
Yes	Yes	capitalist $_{A}$ capitalistic	satiric satirical	parliamentary parliamentarian
Overridden	Yes	novelist novelistic	historic historical	unitary unitarian

VI. Conclusion and discussion

Conflation and affix telescoping

Evidence shows that the same conflated rule may exhibit varying degrees of deviation from full transparency in its semantics and in its domain of application.

Table 7. Three conflated rules of adjective derivation and their variability with respect to semantic transparency and domain composition.

semantic transparency?	domain transparency?	Conflated rules exhibiting both form and category transparency		
		[-ist-ic]	[-ic-al]	[-ari-an]
Yes	Yes	capitalist $_{A}$ capitalistic	satiric satirical	parliamentary parliamentarian
Overridden	Yes	novelist novelistic	historic historical	unitary unitarian
NA	Overridden	*characterist characteristic	* whimsic whimsical	*vegetary vegetarian

VI. Conclusion and discussion

Conflation and affix telescoping

Answering the Telescoping Question requires some care.

We have chosen to treat -ical as a single suffix, rather than as a sequence of -ic and -al for two reasons. First, there are a fair number of forms in -ical that do not have corresponding bases in -ic, for example, practical, vertical, biblical, commonsensical, indexical, quizzical, and especially medical terms like colovesical, surgical, and the like. Second, for many forms in -ical, even where there is a corresponding -ic form attested, there is no sense in which the two suffixes are semantically additive. (Bauer et al. 2013: 289)

VI. Conclusion and discussion

Conflation and affix telescoping

Answering the Telescoping Question requires some care.
We have chosen to treat -ical as a single suffix, rather than as a sequence of -ic and -al for two reasons. First, there are a fair number of forms in -ical that do not have corresponding bases in -ic, for example, practical, vertical, biblical, commonsensical, indexical, quizzical, and especially medical terms like colovesical, surgical, and the like.
Second, for many forms in -ical, even where there is a corresponding -ic form attested, there is no sense in which the two suffixes are semantically additive. (Bauer et al. 2013: 289)
domain transparency
overridden

VI. Conclusion and discussion

Conflation and affix telescoping

Answering the Telescoping Question requires some care.
We have chosen to treat -ical as a single suffix, rather than as a sequence of -ic and -al for two reasons. First, there are a fair number of forms in -ical that do not have corresponding bases in -ic, for example, practical, vertical, biblical, commonsensical, indexical, quizzical, and especially medical terms like colovesical, surgical, and the like. Second, for many forms in -ical, even where there is a corresponding -ic form attested, there is no sense in which the two suffixes are semantically additive. (Bauer et al. 2013: 289)
domain transparency overridden
semantic transparency
overridden

VI. Conclusion and discussion

Conflation and affix telescoping

Although some adjectives in -ical no longer exhibit domain transparency or semantic transparency, many do, and all still exhibit form transparency and category transparency; therefore, the English conflated rule [-ic-al] hasn't yet been replaced by the telescoped rule [-ical]-even though the default transparency of the content that it expresses and of its domain of application are sometimes overridden.

VI. Conclusion and discussion

Conflation and affix telescoping

Although some adjectives in -ical no longer exhibit domain transparency or semantic transparency, many do, and all still exhibit form transparency and category transparency; therefore, the English conflated rule [-ic-al] hasn't yet been replaced by the telescoped rule [-ical]-even though the default transparency of the content that it expresses and of its domain of application are sometimes overridden.

The most decisive kinds of evidence that a conflated rule [-ab-yz]
has been reanalyzed as a simple rule [-abyz] are
(i) the diachronic loss of form transparency and/or category transparency, and
(ii) the eventual disappearance of either or both of [-ab] and [-yz] as independent rules.

VII. References

Arnott, D. W. 1970. The nominal and verbal systems of Fula. OUP.
Bauer, L. 1988. A descriptive gap in morphology. In G. Booij \& J. van Marle (eds.), Yearbook of morphology 1, 17-27. Kluwer.
Bauer, L.; R. Lieber; \& I. Plag. 2013. The Oxford reference guide to English morphology. OUP.
Bilgin, O. 2016. Frequency effects in the processing of morphologically complex Turkish words. Boğaziçi University MA thesis.
Bochner, H. 1992. Simplicity in generative morphology. Mouton de Gruyter.
Dixon, R. M. W. (2014). Making new words: Morphological derivation in English. OUP.
Driem, G. van. 1987. A grammar of Limbu. Mouton de Gruyter.
Harris, A. C. 2017. Multiple exponence. OUP.
Haspelmath, M. 1995. The growth of affixes in morphological reanalysis. In G. Booij \& J. van Marle (eds.), Yearbook of morphology 1994, 1-29. Kluwer.
Luís, A. \& A. Spencer. 2005. A paradigm function account of 'mesoclisis' in European Portuguese. In G. Booij \& J. van Marle (eds.), Yearbook of morphology 2004, 177-228. Springer.
Marchand, H. (1960). The categories and types of present-day English word-formation. Otto Harrassowitz.
O’Donnell, T. J. 2015. Productivity and reuse in language. MIT Press.
Raffelsiefen, R. 1992. A nonconfigurational approach to morphology. In M. Aronoff (ed.), Morphology now, 133-62. SUNY Press.
Soukka, M. 2000. A descriptive grammar of Noon. LINCOM Europa.
Williams, E. 1981. On the notions 'lexically related' and 'head of a word'. LI 12, 245-274. ${ }^{86}$

Why rule conflation rather than affix conflation?

Stem	Past	$-t$	$/ \mathrm{i} / \rightarrow / \varepsilon /$
burn	burn- t	\checkmark	
feed	fed		\checkmark
mean	mean-t	\checkmark	\checkmark

Latin: 'it is prepared'

Limbu: 'I teach them'

Breton: 'you (pl.) will write'

Turkish: 'caused to become a rhino'

Noon: 'big' [sg, class 1, location 2]

